#### **UIL HIGH SCHOOL MATHEMATICS MAGIC MEMORIZATION**

1 hour = 60 minutes

1 minute = 60 seconds

1 foot = 12 inches

1 yard = 3 feet = 36 inches

1 pound = 16 ounces

1 gallon = 4 quarts = 128 ounces

1 quart = 2 pints = 32 ounces

1 pint = 2 cups = 16 ounces

1 cup = 8 ounces

1 gallon = 231 cubic inches

1 square mile = 640 acres

1 inch = 2.54 centimeters

1 foot = 30.48 centimeters

Normal body temperature =  $98.6^{\circ}F = 37^{\circ}C$ 

Boiling point of water =  $212^{\circ}F = 100^{\circ}C$ 

Freezing point of water =  $32^{\circ}F = 0^{\circ}C$ 

1 cubic foot = 1728 cubic inches

1 cubic yard = 27 cubic feet

16 tablespoons = 1cup

1 square foot = 144 square inches

1 square yard = 9 square feet

3 teaspoons = 1 tablespoon

1 mile = 1760 yards = 5280 feet

10 millimeters = 1 centimeter

1 square mile = 640 acres

100 centimeters = 1000 millimeters = 1 meter

1 hectometer = 100 meters

1000 meters = 1 kilometer

1 dekameter = 10 meters

10 decimeters = 1 meter

1 year = 12 months = 365 days

Leap year  $= 366 \, \text{days}$ 

### DAYS IN MONTHS

January (31)

February (28 or 29)

March (31)

April (30)

May (31)

June (30)

July (31)

August (31)

September (30)

October (31)

November (30)

December (31)

## **PRIME NUMBERS**

2 3

5

11

61

13

17

23

79

29

31

37

41

43 47

53

59

7

67

71

73

19

83

89

97

# **GEOMETRY**

- (1) Sum of exterior angles of a regular polygon is 360°.
- (2) Sum of interior angles of a regular polygon =  $180^{\circ}(n 2)$
- (3) Measure of exterior angle =  $\frac{360^{\circ}}{n}$
- (4) Measure of interior angle =  $\frac{180^{\circ} * (n-2)}{n}$
- (5) Area of a regular polygon
  - (A) Given side:  $\frac{ns^2}{4\tan(180^\circ/n)}$
  - (B) Given apothem:  $na^2 tan(180^{\circ}/n)$
  - (C) Given radius:  $\frac{nr^2 \sin(360^\circ/n)}{2}$
- (6) Square
  - (A) Area = side<sup>2</sup> =  $\frac{(diagonal)^2}{2}$ 
    - (B) Perimeter = 4s
  - (C) Length of diagonal =  $s\sqrt{2}$
- (7) Triangle
  - (A) Area =  $\frac{1}{2}$ bh

(8) Equilateral triangle

(A) Area = 
$$\frac{s^2\sqrt{3}}{4} = \frac{h^2\sqrt{3}}{3}$$

(B) Perimter = 3s

(9) Rectangle

$$(A)$$
 Area =  $lw$ 

(B) Perimeter = 2(1 + w)

- (10) Parallelogram
  - (A) Area = bh
- (11) Trapezoid

(A) Area = 
$$\frac{height(base_1 + base_2)}{2}$$

(12) Rhombus

Area = 
$$\frac{(diagonal)^2}{2}$$

(13) Circle

(A) Area = 
$$\pi r^2$$

(B) Circumference =  $2\pi r = \pi d$ 

- (14) Rectangular solid
  - (A) Surface Area = 2(lw + lh + wh)

(B) Inner diagonal = 
$$\sqrt{length^2 + width^2 + height^2}$$

- (C) Volume = lwh
- (15) Cube

(A) Total Surface Area = 
$$6e^2$$

(B) Volume =  $e^3$ 

- (C) Inner diagonal =  $e\sqrt{3}$
- (16) Sphere

(A) Surface Area = 
$$4\pi r^2$$

(B) Volume =  $\frac{4}{3}\pi r^3$ 

(17) Right Circular Cylinder

(A) Lateral Area = 
$$2\pi rh$$

(B) Total Surface Area =  $2\pi r^2 + 2\pi rh$ 

(C) Volume = 
$$\pi r^2 h$$

- (18) Right Circular Cone
  - (A) Lateral Area =  $\pi r l$  (Note : l = slant height)

(B) Total Surface Area = 
$$\pi rl + \pi r$$
 (C) Volume =  $\frac{1}{3}\pi r^2$ 

### MORE ADVANCED FORMULAS

(1) Compound Interest: 
$$A = P(1 + \frac{r}{n})^{nt}$$

(2) Compounding interest continuously: 
$$A = Pe^{rt}$$

(3) Laws of Sines: 
$$\frac{Sin(A)}{a} = \frac{Sin(B)}{b} = \frac{Sin(C)}{c}$$

(4) Laws of Cosines: 
$$c^2 = a^2 + b^2 - 2abSin©$$

(5) Heron's Formula: Area = 
$$\sqrt{s(s-a)(s-b)(s-c)}$$
, where A is the area of a triangle with sides a, b, and c;  $s = \text{semi-perimeter} = \frac{a+b+c}{2}$ 

$$r = \frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}$$

$$A = \frac{1}{2}abSinC$$

(8) Area of a sector of a circle given the radius, r, of the circle and the measure of the intercepted arc in radians, 
$$\theta = \frac{1}{2} r^2 \theta$$
.

(9) Area of a segment of a circle given the radius, r, of the circle and the intercepted arc in radians, 
$$\theta = \frac{1}{2}r^2(\theta - \sin\theta)$$

### **MISCELLANEOUS**

(1) Arithmetic mean of a and b =  $\frac{a+b}{2}$ 

Note: Arithmetic Mean = 
$$\frac{a_1 + a_2 + a_3 + ... a_n}{n}$$

(2) Geometric mean of a nd b =  $\sqrt{ab}$ 

Note: Geometric Mean = 
$$\sqrt[n]{a_1 a_2 a_3 ... a_n}$$

(3) Harmonic mean of a nd b =  $\frac{GeometricMean^2}{ArithmeticMean} = \frac{2ab}{a+b}$ 

Note: Harmonic mean of 3 terms = 
$$\frac{3a_1a_2a_3}{a_1a_2 + a_1a_3 + a_2a_3}$$

- (4) Mode: number that appears the most
- (5) Range: difference of smallest and largest number given
- (6) If  $ax^2 + bx + c = 0$ , then

$$(A) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- (B) Discriminant =  $b^2$  4ac
- (C) Sum of the roots =  $-\frac{b}{a}$
- (D) Product of the roots =  $\frac{c}{a}$

(7) If 
$$ax^3 + bx^2 + cx + d = 0$$
, then

- (A) Sum of the roots =  $-\frac{b}{a}$
- (B) Product of the roots =  $-\frac{d}{a}$
- (C) Sum of the product of the roots taken two at a time =  $\frac{c}{a}$

(8) 
$$(a + b)^2 = a^2 + 2ab + b^2$$
;  $(a - b)^2 = a^2 - 2ab + b^2$ 

(9) 
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(10) 
$$(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

(11) Given points  $(x_1, y_1)$  and  $(x_2, y_2)$ 

(A) Slope = 
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

(B) Midpoint : 
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

(C) Distance = d = 
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

(12) Probability = 
$$\frac{Favorable}{TotalOutcomes}$$
; Odds =  $\frac{Favorable}{Unfavorable}$ 

(13) If Tom can do a job in A hours and Jane can do the same job in B hours, how long will it take them to do the job together?

$$\frac{Both}{A(alone)} + \frac{Both}{B(alone)} = 1$$

- (14) The sum of the coefficients of  $(Ax + By)^n = (A + B)^n$
- (15) A tangent and a secant intersect in a point in the exterior of a circle.

$$\frac{ExternalSegment}{Tangent} = \frac{Tangent}{Secant}$$

- (16) Orthocenter: The point where the altitudes of a triangle intersect
- (17) Centroid: The point where the medians of a triangle intersect.
- (18) Circumcenter: The point where the perpendicular bisectors of the sides of a triangle intersect.
- (19) Incenter: The point where the angle bisectors of a triangle intersect.
- (20) Supplementary angles: two angles the sum of whose measures is 180°
- (21) Complementary angles: two angles the sum of whose measures is 90
- (22) Arithmetic sequence

(A) 
$$t_n = a + (n - 1)d$$

(23) Arithmetic series

(A) 
$$S_n = \frac{n}{2}(a + t_n) = \frac{n}{2}[2a + (n-1)d]$$

- (24) Geometric Sequence
  - $(A) t_n = ar^{n-1}$
- (25) Geometric Series

(A) 
$$S_n = \frac{a(1-r^{n+1})}{1-r}$$

(26) Infinite Geometric Series

(A) 
$$S = \frac{a}{1-r}$$

- (27) Circle:  $(x h)^2 + (y k)^2 = r^2$ 
  - (A) Center: (h, k)
- (B) radius = r
- (28) Parabola:  $(x h)^2 = 4p(y k)$ 
  - (A) Length of latus rectum = |4p|
  - (B) Vertex: (h, k)
- (29)  $\sin 2A = 2\sin A\cos A$
- (30)  $\sin^2 A + \cos^2 A = 1$

(31) 
$$\operatorname{TanA} = \frac{\operatorname{SineA}}{\operatorname{CosA}}$$
;  $\operatorname{CotA} = \frac{\operatorname{CosA}}{\operatorname{SinA}}$ ;  $\operatorname{SecA} = \frac{1}{\operatorname{CosA}}$ ;  $\operatorname{CscA} = \frac{1}{\operatorname{SinA}}$ 

- (32) Angle of Inclination, B, of line with slope m.
  - (A) TanB = m
- (33) The distance between a point  $(x_1, y_1)$  and a line, Ax + By + C = 0

(A) 
$$d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

- (34) In a 45°-45°-90° triangle
  - (A) hypotenuse =  $\log \sqrt{2}$

- (35) In a 30°-60°-90° triangle
  - (A) hypotenuse = 2(short leg)
  - (B) long leg = (short leg)  $\sqrt{3}$
- (36) Lucas numbers: 1, 3, 4, 7, 11, 18. 29. 47. 76. 123. 199, 322, 521 ...
  - (A)  $L_n = \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n \right]$ ; Note: The "nint" function is the "nearest integer function" and is denoted by [x] which means the nearest integer to the number x. The Golden Mean is equal to  $\frac{1+\sqrt{5}}{2}$  which is approximately equal to 1.618.
- (37) Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...
  - (A)  $F_n = \left[\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n}{\sqrt{5}}\right]$  Note: The "nint" function is the "nearest integer function" and is

denoted by [x] which means the nearest integer to the number x.

- (38) Deficient number: If the sum of the positive integral divisors of a number is less than twice the number, the number is a deficient number (Examples: 1, 2, 3, 4, 5, 8, 9, 10, 11, 13, 14, 15, 16,...)
- (39) Perfect number: If the sum of the positive integral divisors of a number is equal to twice the number, the number is a perfect number (Examples: 6, 28, 496, ...)
- (40) Abundant number: If the sum of the positive integral divisors of a number is greater than twice the number, the number is an abundant number (Examples: 12, 18, 20, 24, ...)
- (41) Factorials

(A) 
$$0! = 0$$
 ;  $1! = 1$  ;  $2! = 2$   $3! = 6$   $4! = 24$  ;  $5! = 120$   $6! = 720$ 

- (42) Permutations
  - (A) Permutation of n things taken r at a time =  $\frac{n!}{(n-r)!}$
- (43) Combinations
  - (A) Combination of n things taken r at a time =  $\frac{n!}{r!(n-r)!}$

(44) Laws of Exponents

$$(A) \qquad (a^m)(a^n) = a^{m+n}$$

(B) 
$$\frac{a^m}{a^n} = a^{m-n}$$

(D) 
$$(a^m)^n = a^{mn}$$

(45) Laws of Logarithms

(A) 
$$\operatorname{Log}_b M + \operatorname{Log}_b N = \operatorname{Log}_b MN$$

(B) 
$$\operatorname{Log}_b M - \operatorname{Log}_b N = \operatorname{Log}_b \frac{M}{N}$$

(C) 
$$\operatorname{Log}_{b} M^{p} = \operatorname{pLog}_{b} M$$

(D) Change of base: 
$$\operatorname{Log}_{b} M = \frac{\operatorname{Log} M}{\operatorname{Log} b}$$

(46) 
$$\lim_{x\to\infty} \frac{ax^n + bx^{n-1} + \dots}{cx^n + dx^{n-1} + \dots} = \frac{a}{c}$$

- (47) Interest = Principal x Rate x Time
- (48) Distance = Rate x Time
- (49) Cevian: A line segment joining the vertex of a triangle to any point on the opposite side.

(50) General equation of a conic section is 
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

(A) If 
$$\theta$$
 is the angle of rotation, then  $\cot 2\theta = \frac{A-C}{B}$ 

(B) If 
$$B^2 - 4AC < 0$$
, the conic is either an ellipse or a circle.

(C) If 
$$B^2 - 4AC = 0$$
, the conic is a parabola.

(D) If 
$$B^2 - 4AC > 0$$
, the conic is hyperbola.

(51) 
$$r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2) = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

(52) 
$$\frac{r_1(\cos\theta_1 + i\sin\theta_1)}{r_2(\cos\theta_2 + i\sin\theta_2)} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)]$$

(53) 
$$(\operatorname{rcis}\theta)^n = r^n \operatorname{cisn}\theta$$

Although the cross product of two vectors can be solved by a formula, it is solved more easily if set up as a 3 x 3 determinant. If  $v = (x_1, y_1, z_1)$  and  $w = (x_2, y_2, z_2)$ , the  $v \times w = (x_1, y_2, z_3)$ 

$$\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = ai + bj + ck ; \text{ Answer : (a, b, c)}$$

- (55) Euler Polyhedron Formula: V E + F = 2 for all convex polyhedrons, where V = number of vertices, E = number of edges, and F = number of faces.
- (56) The distance between the center and the directrix of an ellipse  $=\frac{a}{e}$ , where  $e=\frac{c}{a}$  (e = eccentricity of the ellipse).
- (57) The radius of a circle that circumscribes a triangle with sides a ,b, and c is equal to  $\frac{abc}{4K}$ , where K is the area of the triangle  $(K = \sqrt{s(s-a)(s-b)(s-c)})$
- (58) The critical points of a function are located where the first derivative is equal to 0 or where the first derivative is undefined.
- (59) How many ways can n candies be placed in a bag if there are r colors of candy?
- (60) The absolute maximum or absolute minimum of f(x) in the interval [a, b] are located at f(a), f(b), or where the first derivative is equal to 0.