Teacher Ofelia Garza e-mail ogarza@sharylandisd.org

AP Chemistry Summer Assignment 2018-2019

Welcome to AP Chemistry! I am happy that you have decided to take AP Chemistry. AP Chemistry is a difficult course and it requires that you keep up with the assignments and are willing to spend time working through the course material. You already have a strong background in chemistry from Prechemistry; however, since it may have been a little while since you applied your knowledge you will need to take some initiative to recall that knowledge. The purpose of this summer assignment is to help you review and relearn the fundamentals of chemistry, your polyatomic ions, the strong acids, solubility rules and to set up a notebook.

We will be using the ninth edition of Zumdahl/Zumdahl <u>CHEMISTRY</u> for our textbook.

Also these two web site will help you understand more of what we will try to accomplish during the course.

http://www.bozemanscience.com/chemistry https://www.youtube.com/playlist?list=PL8dPuuaLjXtPHzzYuWy6fYEaX9mQQ8oGr http://www.chem.purdue.edu/gchelp/howtosolveit/howtosolveit.html

Below you will find your summer packet, getting together with friends and working on your own will get you prepared for this course. Passing the AP Chemistry exam will get you college credits in most colleges. You will need to do some research on the requirements of the college of your choice.

Once again I am happy that you signed on. I LOVE what and do and I LOVE to see students excel. I am extremely excited to start AP chemistry and enjoy the ride with you. See you in the spring.

Summer Packet

Recall and memorize:

1. SI base units and prefixes (SI unit for length = meter, for mass = kg, for volume = m^3)

2. Rules for significant figures

3. Element Names & Symbols (Element symbols 1 to 38 and Ag, Cd, I, Xe, Cs, Ba, W, Hg, Pb, Sn, Rn, Fr, U, Th, Pu, and Am written correctly (Co, not CO)! Students should be able to locate these elements quickly on the periodic table provided since the table provided on the exam does not include element names.)

4. Monatomic Ions

a. Ions with (usually) one oxidation state:

 Li^+ , Na^+ , K^+ , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Ag^+ , Zn^{2+} , Cd^{2+} , Al^{3+} N^{3-} , O^{2-} , S^{2-} , F^- , Cl^- , Br^- , I^-

5. Strong Acids (for all practical purposes, all others are weak acids): HCl, HBr, HI, H₂SO₄, HNO₃, HClO₃, HClO₄

6. Strong Bases (for all practical purposes all others are weak):

Group I hydroxides and Group II hydroxides (except Be(OH)2 and Mg(OH)2)

7. Solubility Rules

Soluble Ionic Compounds (aqueous)	Exceptions (solids or precipitates)
Group IA and ammonium (NH ₄ ⁺) salts	
nitrates (NO ₃ ^{$-$}) and acetates (C ₂ H ₃ O ₂ ^{$-$})	
Chlorides (Cl ⁻), bromides (Br ⁻) and iodides	Compounds of Ag^+ , Hg_2^{2+} , and Pb^{2+}
(I^{-})	
Sulfates (SO ₄ ²⁻)	Compounds of Sr^{2+} , Ba^{2+} , Ca^{2+} , and Pb^{2+}
Insoluble Ionic Compounds (solids)	Exceptions (aqueous)
Sulfides (S ²⁻)	Compounds of NH ₄ ⁺ , Group IA ions, or Ca ²⁺ , Sr ²⁺ , and Ba ²⁺
Carbonates (CO_3^{2-})	Compounds of NH4 ⁺ and Group IA ions
Phosphates (PO ₄ ³⁻)	Compounds of NH4 ⁺ and Group IA ions
Hydroxides (OH ⁻)	Compounds of NH4 ⁺ , Group IA ions, or Ca ₂₊ , Sr ²⁺ , and Ba ²⁺

From the table:			
Cations	Name		
H⁺	Hydrogen		
Li ⁺	Lithium		
Na⁺	Sodium		
K*	Potassium		
Rb⁺	Rubidium		
Cs*	Cesium		
Be ²⁺	Beryllium		
Mg ²⁺	Magnesium		
Ca ²⁺	Calcium		
Ba ²⁺	Barium		
Sr ²⁺	Strontium		
Al ³⁺	Aluminum		
Anions	Name		
H.	Hydride		
F ¹	Fluoride		
Cl	Chloride		
Br	Bromide		
ľ	lodide		
0 ²⁻	Oxide		
S ²⁻	Sulfide		
Se ²⁻	Selenide		
N ³⁻	Nitride		
P ³⁻	Phosphide		
As ³⁻	Arsenide		
Type II Cations	Name		
Fe ³⁺	Iron(III)		
Fe ^{2*}	Iron(II)		
Cu ^{2*}	Copper(II)		
Cu [*]	Copper(I)		
Co ³⁺	Cobalt(III)		
Co ²⁺	Cobalt(II)		
Sn⁴⁺	Tin(IV)		
Sn ²⁺	Tin(II)		
Pb ⁴⁺	Lead(IV)		
Pb ^{2*}	Lead(II)		
Hg ²⁺	Mercury(II)		

Ions to Memorize			
Cations	Name		
Ag⁺	Silver		
Zn ²⁺	Zinc		
Hg ₂ ²⁺	Mercury(I)		
NH4 ⁺	Ammonium		
Anions	Name		
NO ₂ ⁻	Nitrite		
NO ₃ [*]	Nitrate		
SO3 ²⁻	Sulfite		
SO4 ²⁻	Sulfate		
HSO₄ ⁻	Hydrogen sulfate (bisulfate)		
OH	Hydroxide		
CN ⁻	Cyanide		
PO₄ ³⁻	Phosphate		
HPO42-	Hydrogen phosphate		
H ₂ PO ₄ ⁻	Dihydrogen phosphate		
NCS ⁻	Thiocyanate		
CO32-	Carbonate		
HCO ₃ ⁻	Hydrogen carbonate (bicarbonate)		
CIO-	Hypochlorite		
CIO ₂ ⁻	Chlorite		
CIO ₃ ⁻	Chlorate		
CIO4 ⁻	Perchlorate		
BrO ⁻	Hypobromite		
BrO ₂ ⁻	Bromite		
BrO ₃ ⁻	Bromate		
BrO ₄	Perbromate		
IO.	Hypoiodite		
IO ₂	iodite		
IO ₃	iodate		
IO4	Periodate		
C ₂ H ₃ O ₂ ⁻	Acetate		
MnO₄ ⁻	Permanganate		
Cr ₂ O ₇ ²⁻	Dichromate		
CrO ₄ ²⁻	Chromate		
0 ₂ ²	Peroxide		
$C_2O_4^{2-}$	Oxalate		
NH ₂	Amide		
BO33-	Borate		
S ₂ O ₃ ²⁻	Thiosulfate		

3. Solubility rules State whether the following are soluble or insoluble?

Na ₂ CO ₃		Pb(NO ₃) ₂
K ₂ S	BaSO4	(NH4)2S
Agl	Ni(NO ₃)2	KI
FeS	PbCl ₂	CuSO4
Li ₂ O	Mn(C ₂ H ₃ O ₂) ₂	Cr(OH) ₃
AgClO ₃	Sn(SO ₃) ₄	FeF ₂

Write out the balanced chemical equation for each of the following double replacement reactions. Predict whether each of these double replacement reactions will give a precipitate or not based on the solubility of the products. If yes, identify the precipitate.

silver nitrate and potassium chloride

magnesium nitrate and sodium carbonate

strontium bromide and potassium sulfate

cobalt (III) bromide and potassium sulfide

ammonium hydroxide and copper (II) acetate

lithium chlorate and chromium (III) fluoride

Show the total ionic and net ionic forms of the following equations. If all species are spectator ions, please indicate that no reaction takes place. Note! You need to make sure the original equation is balanced before proceeding!

1. $AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$

2. $Mg(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow MgCO_3(s) + NaNO_3(aq)$

3. strontium bromide(aq) + potassium sulfate(aq) \rightarrow strontium sulfate(s) + potassium bromide(aq)

4. manganese(II)chloride(aq) + ammonium carbonate(aq) → manganese(II)carbonate(s) + ammonium chloride(aq)

5. chromium(III)nitrate(aq) + iron(II)sulfate(aq) \rightarrow chromium(III)sulfate(aq) + iron(II)nitrate(aq)

9. Colors of common ions in aqueous solution – most common ions are colorless in solution; however, some have distinctive colors. These colors have appeared on past AP Chemistry exams:

Fe²⁺ and Fe³⁺ - various colors Cu²⁺ - blue to green Cr²⁺ - blue Cr³⁺ - green or violet Mn²⁺ - faint pink Ni²⁺ - green Co²⁺ - pink MnO₄⁻ - dark purple CrO₄²⁻ - yellow Cr₂O₇²⁻ - orange

10. Rules for assigning (determining) oxidation numbers:

Rule 1: Atoms in a pure element have an oxidation number of zero.

Rule 2: The more electronegative element in a binary compound is assigned the number equal to the negative charge it would have as an anion. The less-electronegative atom is assigned the number equal to the positive charge it would have as a cation.

Rule 3: Fluorine has an oxidation number of -1 in all of its compounds because it is the most electronegative element.

Rule 4: Oxygen has an oxidation number of -2 in almost all compounds.

Exceptions:

Peroxides, such as H₂O₂, in which its oxidation # is -1

When oxygen is in compounds with halogens, such as OF_2 , its oxidation # is +2.

Rule 5: Hydrogen has an oxidation # of +1 in all compounds that are more electronegative than it; it has an oxidation # of -1 in compounds with reactive metals (hydrides).

Rule 6: The algebraic sum of the oxidation numbers of all atoms in a neutral compound is zero.

Rule 7: The algebraic sum of the oxidation numbers of all atoms in a polyatomic ion is equal to the charge of the ion.

Rule 8: Rules 1-7 apply to covalently bonded atoms; however, oxidation numbers can also be assigned to atoms in ionic compounds.

11. Basic Organic Nomenclature

- Prefixes indicate the number of carbons in the compound:

Prefix	Number of carbons
Meth-	1
eth	2
Prop	3
But	4
Pent	5
Hex	6
Hept	7
Oct	8
Non	9
Dec	10
Undec	11
Dodec	12

Section B: Calculations and Short Answer

I. Dimensional Analysis and Significant Figures Review

- 1. Write the most common guidelines to determine significant figures (digits) with an example?
- 2. Use factor labeling method to convert the following:
- a. 515 m = ____ miles.
- b. 200 in = ____ meters
- c. 325 days = _____ seconds.
- d. 20 gallons = ____ ml
- e. 3 meters into centimeters
- f. 10 kilometers into meters
- g. 15,050 milligrams into grams
- h. 3,264 milliliters into liters
- i . 9,674,444 grams into kilograms

3. Classify each of the following as units of mass, volume, length, density, energy, or pressure.

- a. mg
- b. mL
- c. cm3
- d. mm
- e. kg/m3
- f. kJ
- g. atm
- h. cal.

4. Most laboratory experiments are performed at room temperature at 25°C. Express this temperature in:

a. °F b. K

5. A cylinder rod formed from silicon is 16.8 cm long and has a mass of 2.17 kg. The density of silicon is 2.33 g/cm3. What is the diameter of the cylinder? (the volume of cylinder is given by Π r2h, where r is the radius and h is the length)

6. How many significant figures are in each of the following?

a. 1.92 mm b. 0.030100 kJ

- c. 6.022 x1023 atoms
- d. 460.00 L
- e. 0.00036 cm3
- f. 100
- g. 1001
- h. 0.001
- i. 0.010

7. Record the following in correct scientific notation:

- a. 350,000,000 cal
- b. 0.0000721 mol
- c. 0.000000809 Å
- d. 765,400,000,000 atoms

8. Calculate the following to the correct number of significant figures.

a. 1.27 g / 5.296 cm³ b. 12.235 g / 1.01 L c. 12.2 g + 0.38 g d. 17.3 g + 2.785 g e. 2.1 x 3.21 f. 200.1 x 120 g. 17.6 + 2.838 + 2.3 + 110.77

9. If you drive 154 miles in 3.0 hours, what is your average speed in meters per minute?

10. Calculate the mass of a sample of copper that occupies 4.2×10^3 cm³ if the density of copper is 8.94 g/cm³

II. Atomic Structure Review

1. Fill in the table:

Element or ion	Complete symbols	# protons	# neutrons	# electrons
Fe-55				
\mathbf{K}^+				
		27		25
O ²⁻		11	12	11
Pb-208				

2. Find the average atomic mass of an element if, out of 100 atoms, 5 have a mass of 176amu, 19 have a mass of 177amu, 27 have a mass of 178amu, 14 have a mass of 179amu and 35 have a mass of 180amu.

3. Strontium consists of four isotopes with masses and percent abundances as follows: 83.9134amu (0.5%), 85.9094amu (9.9%), 86.9089amu (7.0%), and 87.9056amu (82.6%). Calculate the atomic mass of strontium.

- 4. Write the complete and abbreviated ground state electron configurations for:
 - a. Strontium
 - b. Iron
 - c. Sulfur Ion
 - d. Neodymium

III. Nomenclature Review

Forming binary ionic compounds

A. In a binary ionic compound the total positive charges must equal the total negative charges. The best way to write correct formula units for ionic compounds is to use the "least common multiple" method.

B. Sample problem: What ionic compound would form when calcium ions combine with bromide ions? Steps to writing ionic formulas:

1. Write the ions with their charges, cations are always first. Ex: $Ca^{2+} Br^{1-}$

2. Determine the least common multiple of the charges. This is the total positive and total negative value that would result in a neutral compound. Ex: LCM = 2

3. Use subscripts after each element symbol to indicate the number of that ion needed to reach the least common multiple of charge. Ex: CaBr₂

Naming binary ionic compounds

A. Combine the names of the cation and the anion.

B. Example; BaBr₂ is named barium bromide.

Naming binary ionic compounds that contain polyatomic ions

A. The polyatomic ions on your common ions list should be memorized.

B. The most common oxyanions – polyatomic anions that contain oxygen, end in –ate. Oxyanions with one less oxygen end in –ite. For example: NO_3^{-1} is nitrate SO_4^{2-} is sulfate NO_2^{-1} is nitrite SO_3^{2-} is sulfate

C. Anions with one less oxygen than the -ite ion are given the prefix hypo-.

D. Anions with one more oxygen than the –ate ion are given the prefix per-. ClO^{-1} is hypochlorite ClO_3^{-1} is chlorate ClO_2^{-1} is chlorite ClO_4^{-1} is perchlorate

E. Naming compounds with polyatomic ions is the same as naming other compounds, just name the cation and then the anion.

If there is a transition metal involved, be sure to check the charges to identify which ion (+1, +2, +3, +4...) it may be so that you can put the correct Roman numeral in the name.

Naming binary molecular compounds

With molecules, the prefix system is used.

Number Prefix Number Prefix

1 mono-	7 hepta-
2 di-	8 octa-
3 tri-	9 nona-
4 tetra-	10 deca-
5 penta-	11 undeca
6 hexa-	12 dodeca

A. The less-electronegative element is always written first. It only gets a prefix if it has more than one atom in the molecule.

B. The second element gets the prefix and the ending -ide.

C. The o or a at the end of the prefix is dropped when the word following the prefix begins with another vowel, for example monoxide or pentoxide.

III. Nomenclature Review (continued)

- 1. Write formulas for the following substances:
- a. Barium sulfate _____
- b. Ammonium chloride _____
- c. Chlorine monoxide _____
- d. Silicone tetrachloride _____
- e. Magnesium fluoride _____
- f. Sodium oxide _____
- g. Sodium peroxide_____
- h. Copper (I) iodide _____
- i. Zinc sulfide _____
- j. Potassium carbonate _____
- k. Hydrobromic acid _____
- l. Perchloric acid _____
- m. Lead (II) acetate _____
- n. Sodium permanganate _____
- o. Lithium oxalate _____
- p. Potassium cyanide _____
- q. Iron (III) hydroxide _____
- r. Silicone dioxide _____
- s. Nitrogen trifluoride _____
- t. Chromium (III) oxide _____
- u. Calcium chlorate _____
- v. Sodium thiocyanate _____
- w. Cobalt (III) nitrate _____
- x. Nitrous acid _____
- y. Ammonium phosphate _____
- z. Potassium chromate _____

2. Name each of the following compounds (Give acid names where appropriate)

a. CuSO ₄	_
b. PCl ₃	
c. Li ₃ N	
d. BaSO ₃	_
e. N ₂ F ₄	
f. KClO ₄	_
g. NaH	
h. (NH ₄) ₂ Cr ₂ O ₇	
i. HNO ₂	
j. Sr ₃ P ₂	
k. Mg(OH)2	
1. Al ₂ S ₃	
m. AgBr	_
n. P ₄ O ₁₀	
o. HC ₂ H ₃ O ₂	
p. CaI ₂	
q. MnO ₂	
r. Li ₂ O	
s. FeI ₃	
t. Cu ₃ PO ₄	_
u. PCl ₃	
v. NaCN	_
w. Cs ₃ N	
x. Zn(NO ₃) ₂	
y. N ₂ O	
z. HF	

Nomenclature Review (continued)

Practice with acids! Remember: -IC from –ATE; -OUS from –ITE; HYDRO-, -IC from –IDE

Complete the Following Table:

Name of Acid	Formula of Acid	Name of Anion
hydrochloric	HCl	chloride
sulfuric acid	H_2SO_4	sulfate
	HI	
		sulfite
chlorous acid		
		nitrate
	HC ₂ H ₃ O ₂ or CH ₃ COOH	
hydrobromic acid		
		sulfide
	HNO ₂	

III. Balancing Equations Review

Balance the following equations by adding coefficients as needed. Some equations may already be balanced.

1) $_$ C₆H₆ + $_$ O₂ \rightarrow $_$ H₂O + $_$ CO₂ 2) $NaI + Pb(SO_4)_2 \rightarrow PbI_4 + Na_2SO_4$ 3) $_$ NH₃ + $_$ O2 \rightarrow $_$ NO + $_$ H₂O 4) $_$ Fe(OH)₃ \rightarrow $_$ Fe₂O₃ + $_$ H₂O 5) $HNO_3 + Mg(OH)_2 \rightarrow H_2O + Mg(NO_3)_2$ 6) $H_3PO_4 + NaBr \rightarrow HBr + Na_3PO_4$ 7) $_$ C + $_$ H₂ \rightarrow $_$ C₃H₈ 8) $_$ CaO + $_$ MnI₄ \rightarrow $_$ MnO₂ + $_$ CaI₂ 9) $_$ Fe₂O₃ + $_$ H₂O \rightarrow $_$ Fe(OH)₃ 10) $_C_2H_2 + _H_2 \rightarrow _C_2H_6$ 11) $VF_5 + HI \rightarrow V_2I_{10} + HF$ 12) $_$ OsO₄ + $_$ PtCl₄ \rightarrow $_$ PtO₂ + $_$ OsCl₈ 13) $_CF_4 + _Br_2 \rightarrow _CBr_4 + _F_2$ 14) $\underline{\hspace{0.1cm}}$ Hg₂I₂ + $\underline{\hspace{0.1cm}}$ O₂ \rightarrow $\underline{\hspace{0.1cm}}$ Hg₂O + $\underline{\hspace{0.1cm}}$ I₂ 15) $Y(NO_3)_2 + GaPO_4 \rightarrow YPO_4 + Ga(NO_3)_2$

IV. Chemical Reactions

In AP Chemistry, most of the reaction we write are called "net ionic." But before we can do that, you need to review and memorize some basic reaction types. For some basic review, go to the following website: http://misterguch.brinkster.net/6typesofchemicalrxn.html Now try these sample problems from the website. Give the type for each of the following reactions:

1) NaOH + KNO ₃ \rightarrow NaNO ₃ + KOH	
2) $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$	
3) 2 Fe + 6 NaBr \rightarrow 2 FeBr ₃ + 6 Na	
4) $CaSO_4 + Mg(OH)_2 \rightarrow Ca(OH)_2 + MgSO_4$	
5) NH ₄ OH + HBr \rightarrow H ₂ O + NH ₄ Br	
6) $Pb + O_2 \rightarrow PbO_2$	
7) $Na_2CO_3 \rightarrow Na_2O + CO_2$	

Learn these types of decomposition reactions:

1. Metallic carbonates, when heated, form metallic oxides and CO₂(g). EX. CaCO₃(s) \rightarrow CaO(s) + CO₂(g)

2. Most metallic hydroxides, when heated, decompose into metallic oxides and water. EX. $Ca(OH)2(s) \rightarrow CaO(s) + H_2O(g)$

3. Metallic chlorates, when heated, decompose into metallic chlorides and oxygen. EX. $2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$

4. Some acids, when heated, decompose into nonmetallic oxides and water. EX. $H_2SO_4 \rightarrow H_2O(1) + SO_3(g)$

5. Some oxides, when heated, decompose. EX. $2HgO(s) \rightarrow 2Hg(l) + O_2(g)$

6. Some decomposition reactions are produced by electricity. EX. $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$ EX. $2NaCl(l) \rightarrow 2Na(s) + Cl_2(g)$

Learn these types of synthesis reactions:

1. Metal + oxygen \rightarrow metal oxide EX. 2Mg(s) + O₂(g) \rightarrow 2MgO(s)

2. Nonmetal + oxygen \rightarrow nonmetallic oxide EX. C(s) + O₂(g) \rightarrow CO₂(g)

3. Metal oxide + water \rightarrow metallic hydroxide EX. MgO(s) + H2O(l) \rightarrow Mg(OH)2(s)

4. Nonmetallic oxide + water \rightarrow acid EX. CO₂(g) + H₂O(l) \rightarrow ; H₂CO₃(aq)

5. Metal + nonmetal \rightarrow salt EX. 2 Na(s) + Cl₂(g) \rightarrow 2NaCl(s)

6. A few nonmetals combine with each other. EX. $2P(s) + 3Cl_2(g) \rightarrow 2PCl_3(g)$

Now try these decomposition reactions: (Rewrite as a balanced equation with the products predicted):

- 1. barium hydroxide (heated)
- 2. sodium carbonate (heated)
- 3. lithium chlorate (heated)
- 4. electrolysis of aluminum oxide
- 5. sulfuric acid heated gently]

Now try these synthesis reactions: (Rewrite as a balanced equation with the products predicted):

- 1. magnesium burned in oxygen
- 2. hydrogen gas + nitrogen gas
- 3. sulfur burned (complete combustion)
- 4. calcium oxide added to water

An iron sample has a mass of 3.50 lbs. What is the mass of this sample in grams?

Perform the following conversion: 6.00m/s = _____ mi/hr

Convert 23.2 °C to _____ °F

An experiment requires 75.0 g or ethyl alcohol (density 0.790 g/mL). What volume, in liters will be required?

Calculate the mass of a rectangular solid that has a density of 2.53 g/cm_3 , and which measures 2.50 cm by 1.80 cm by 3.00 cm.

A sample containing 2.94 mol of calcium contains how many atoms?

A 14.8 g sample of magnesium represents how many atoms?

Stoichiometry: Show all of your work for the following problems:

Composition

1. A 0.941 gram piece of magnesium metal is heated and reacts with oxygen. The resulting magnesium oxide weighed 1.560 grams. Determine the percent composition of each element in the compound.

- 2. Determine the empirical formula given the following data for each compound:
 - a) Fe = 63.53%, S = 36.47%

b) Fe = 46.55%, S = 53.45%

3. A compound contains 21.6% sodium, 33.0% chlorine, 45.1% oxygen. Determine the empirical formula of the compound.

Find the mass percent of nitrogen in each of the following compounds:

NO	
NO2	
N2O4	

N₂O

Benzene contains only carbon and hydrogen and has a molar mass of 78.1 g/mol. Analysis shows the compound to be 7.44% hydrogen by mass. Find the empirical and molecular formula of benzene.

Calcium carbonate decomposes upon heating, producing calcium oxide and carbon dioxide. (answer questions a-d)

- a. Write a balanced chemical equation for this reaction.
- b. How many grams of calcium oxide will be produced after 12.25 grams of calcium carbonate are completely decomposed?

c. What volume of carbon dioxide gas is produced from 12.25 grams of calcium carbonate at STP?

d. What is the volume of carbon dioxide in L if the pressure is 785 mmHg and the temperature is 30.0° C?

Hydrogen gas and bromine gas react to form hydrogen bromide gas. (answer questions a-e)

a. Write a balanced equation for this reaction.

b. 3.2 grams of hydrogen reacts with 9.5 grams of bromine. Which is the limiting reactant?

C How many grams of hydrogen bromide gas can be produced using the amounts in (b)?

d. How many grams of excess reactant are left unreacted?

e. What volume of HBr, measured at STP is produced in (b)?

When ammonia gas, oxygen gas and methane gas (CH₄) are combined, the products are hydrogen cyanide gas and water. (answer questions a-c)

a. Write a balanced equation for this reaction.

b. Calculate the mass of each product produced when 225 grams of oxygen gas react with an excess of the other two reactants.

c. If the actual yield of the experiment in (b) is 105 grams of HCN, calculate the percent yield.

Given the equation below, what mass of water would be needed to react with 10.0g of sodium oxide? Na₂O + H₂O \rightarrow 2NaOH

 $2NaClO_3 \rightarrow 2NaCl + 3O_2$ What mass of sodium chloride is formed along with 45.0g of oxygen gas? What mass of water will be produced when 100.0g of ammonia is reacted with excess oxygen?

If the reaction in the previous problem is done with 25.0g of each reactant, which would be the limiting factor?

 $Na_2S + 2AgNO_3 \rightarrow Ag_2S + 2NaNO_3$

If the above reaction is carried out with 50.0g of sodium sulfide and 35.0g of silver nitrate, which is the limiting factor? What mass of the excess reactant remains? What mass of silver sulfide would precipitate?

6. $6NaOH + 2Al \rightarrow 2Na_3AlO_3 + 3H_2$

What volume of hydrogen gas (measured at STP) would result from reacting 75.0g of sodium hydroxide with 50.0g of aluminum?

Classify the following types of reactions:

- 1) NaOH + KNO₃ --> NaNO₃ + KOH _____
- 2) $CH_4 + 2 O_2 --> CO_2 + 2 H_2O$
- 3) 2 Fe + 6 NaBr --> 2 FeBr₃ + 6 Na _____
- 4) $CaSO_4 + Mg(OH)_2 \rightarrow Ca(OH)_2 + MgSO_4$

5) NH₄OH + HBr --> H₂O + NH₄Br _____

6) $Pb + O_2 --> PbO_2$ _____

7) $Na_2CO_3 --> Na_2O + CO_2$

Electromagnetic Radiation and the Bohr Atom

Light is known to have the **wave-like** properties of **frequency** (v) and **wavelength** (λ). These are illustrated below. The x-axis is a measure of time. The distance between the peaks is called the **wavelength** and the number of waves per unit time (1 second in this example) is called the number of **cycles**. The first wave pattern has **2 cycles per second**, the middle example has **4 cycles per second** and the example on the right has **8 cycles per second**. This is the **frequency** of the wave, and has the units of **hertz**, **Hz** (cycles/s).

In Electromagnetic radiation (light) these are related by the equation:

 $c = \lambda v$

where \mathbf{c} = the speed of light, 2.998 x 10⁸ m/s, $\lambda \square$ = wavelength (m) and υ = frequency (s⁻¹ or Hz). The electromagnetic spectrum (EMS) is shown below.

Which color of visible light has the shortest wavelength? Which radiation has wavelengths longer than visible light?

•	 Increasing energy 	/		
	$\wedge \wedge$	$\wedge /$	\searrow	\int
·	Increasing waveleng	ıth		

1. The wavelength of green light is about 522 nm. What is the frequency of this radiation?

2. What is the wavelength of a photon that has a frequency of 2.10×10^{14} Hz? Answer in nm and determine what type of radiation this is.

Planck recognized that energy is **quantized** and related the energy of radiation (emitted or absorbed) to its frequency.

$$\Delta E = n h v$$

where \mathbf{n} = integer and \mathbf{h} = Planck's constant = 6.626 x 10⁻³⁴ J s

- 3. Which of the following are **directly** related?
 - a) energy and wavelength
 - b) wavelength and frequency
 - c) frequency and energy
- 4. A classical radio station broadcasts at 93.5 MHz ($M = 10^6$). Find the wavelength of this radiation, in meters, and the energy of one of these photons, in J. What type of radiation is this?
- 5. What is the energy of a photon with:

a) a wavelength of 827 nm? What type of radiation is it?

b) a wavelength of 1 nm? What type of radiation is it?

•